NEW MIOCENE BULUNGAMAYINE KANGAROOS (MARSUPIALIA: POTOROIDAEIFROM RIVERSLEIGH, NORTHWESTERN QUEENSI,AND

Abstract

B. N. COOKE

Cuoke, B.N. 19970630 : New Mocene bulungamayine kangarons (Marsuphalia: Porooidac) from Riverslejgh, northwestern Queenshand. Memoirs of the Quechslaml Museum \&1(2): 281-294 Brisbane, ISSN 0079-8835. freshwater Miocene System B limestone at Riversleigh, NW Qucensland. Subfamillal diagnosis of Bulungamay inae is emended. The new species indicale than Iophudnty was whic eded in bulungamayines by a different process fiom that in halbatines. Similarities in dental murpholngy between hulungamayines and bate Miocene macropodids suggess that Bulungamayinas is ancestral to Macropodidae.kiverskigh, kangarow. bolluarines. Bulurgameyinar. kophodonty:

 Bristone, Queenslund 4hoh, Australia; 17 December 199°.

Rat-kangaroos or potoroids, in the sense of Archer \& Bartholomai (1978) and Bartholomai (1978), were unknown in the pre-Fliocene fussil nesord of Australia untit Archer (1979) deseribed Wabularoonutughoni as an enigmatic, lophodont hitrgarou from the Riversleigh Local Fauna of the Carl Creek Limestone. Flannery el at. (1982) described Bulunganaya delicata from the Carl Creck L.imestone and placed it and W. nuughtomi in the potornid Bulunganayinae. Gumardee puscuali, also from the Carl Creek Limestone was described in the same paper but placed in the Potoroinac. More recent additions to the record ol potoroines include Wakiewakia lawsoni Woodburne, 1984 and Purtia masaicus Case. 1984, from the Ngapakaldi Local Fauna of South Australia and Betrongiu mosesi Flannery \& Archer. 1987, from Two Trecs Site al Riversleigh. Flannery \& Rich (1986) deseribed Gumardee and indeterminate potorvines from the Tarkaroifloo Local Fauna ol South Australia.
Archer \& Flamnery (198S) erected Papleopinae for Ehaltudeta intu, a giant rat kangaroo from Gag Site at Riversleigh and Pleistocenc and Ptiocene species of Propleopms. Flamery \mathbb{R}^{2} Archer (1987) described Hypsiprimnodon furtholonail from the Gag Site at Riversleigh and Flannery \& Rich (1986) reported hypsiprimnodontine material from the Tarkarooloo Local Fauna, Palaeopotoroinae Flannery \& Rich, 1986 accommodates Palarapotorous privers lirom the Tarkarooloo Local Fauna.
The diversity of pre-Pliocene potoroids is such that only 2 of the more recently discovered species have been assigned ter existing genera and 3 new subtamilies have been proposed. Of these

Bulungamayinae Flannery et inl. 1982, has ah. tracted most discussion. Woodburne (1984) and Case (1984) argued that the lophodont bulungamayines W. naughoni and AB, deticara share characteristics with plesiomorphie macropedids (their macropudines) such is Dorcopsoides fossilis Woudhurne. 1967. Dorcopsis and Dorcopsulus and should be included in Macropodidae (their Macropodinae). They also argued a similar placement of Gumardee Flannery et al. (1984) identilied synapomorphies which they considered uniteal potoroids in a monophyletic group and defended their plitcement of bulungamayines and \&i pascwall within Potoroidae on the basis of several of those derived states. Flannery \& Areher (1987a, b) dermonstrated that one suggested syinapomorphicecharacter, squamosal-frontal contact on the lateral wall of the cranium, is not universal withon the group and could no longer he consid. ered as a potoroid synapomorphy. The state of this character is unk nown in tew bullug: analine material deseribed below.
The new species are similar in size and have similar premolar morphology to that of R. delicata and logether with that species represent a sequence which reveals much about the evolutuon ol lophodonty within Bulungamayinae.

METHODS

Molar homology follows Luckett (1993), premolar homology follows Flower (1867). Dental deseriptive terminology is prineipally that uied by Archar (1984) but with sume lerms adepled from Sralay (1969) and Ride (1993). In upher
molars the (erm, "paracingulum' is used to indicate an anterior cingulum homaded laterally by the preparacrista and preprotocrista as indicated in Scalay (1969). Ride used 'precingulun' lor this structure I use "precingulum" for an anterions cingulum extending lingually from the preprotocrista, following Spalay. This structure was pelerred to by Ride at the "anterolingual sangulum". "Mebatingulum" is used lor a postefior eingulum bounded posterolingually by the postmetaconule crista; "paracrista" and "metacrista' are used for the hngladly directed, lophforming cristae lrom the paracone and metacone. respectively. Use of the lather lerm in his mannes is a departure Irom Szalay who uses "metarista" synonymously with "postmetactista". "Posemetacrista is used here in the sernse of Archer (1984).
Cusp homolugy of upper molars is that of Tediord \& Woodburne (1987), with the posterior huccal and lingual pusps designated as metacone and metaconule respectively, and the cuspule theiween these as the neometacomile, Suprageneric (classitication lollows Aplin \& Archer (1987). Materiat is honsed in the Quecnstand Muscum (QMF). Mcasurements are in nillimeres.

SYSTEMATICS

Superfanily MACROPODOIDEA Gisey, 1821 Fumily POTOROIDAE Gray, 1821 Sublamily BULUNGAMAYINAE Flannery. Areher \& Plane 1982. emend. Curke. 1997

Bulungamaynes have a buccally expanded masseteric canal confluent over ins lengit with the inlerior dental canal, the common canal penetrating decply willain the dentary below the mular row. The digastric process of the dentary is expanded so that the ventral margin of the dentary is convex below the molar row. It has enamel confined to the huccal surlace but extensive un that surlate and not confined to the ventral portion as in is in porormines. Vembat and dorsal enamel llanges are present on $3_{1}, P_{3}$ is clongate with many line transeristids and a bulbous base. A small toosh, I2 but which may loe a small canine. is just pusterior to the dorsal margin of the 1 , alveolus. Molar teeth may be humolophodont or lophodont as delined by Flannery et al. (1984).
Bulungamayines dilter from hypsiprimnedontines and propleopines by having an clongate P_{3} whose ocelusal mangin in lateral view is straght or concave, rather than a plagiaulacoid P_{3}
with a convex occlusal margin. They dfier liom potoroines by having much more bulbous premolars, by having an I_{a} and a much more extensive area of enamel on the buccal surface of 1 . They differ fom palacopororoines by lacking a distinet protostylid on M_{1}.

RLMARKS Type specinnens ol bulungunayines erected hercin are far more complete than those of prevously described species and reveal details of anuomical and dental feutures absent in the holotypes of Bulungamaya delicome and Wabularoo naughoni. This additional information forces the above subfamily revision.

Nowidgee gen, nov.

TYPE SPECIES Nowidgce matrix sp my.

DIAGNOSIS. Buhnnamayme with hunolopladons molars, I Tper molars with atarge stytarcurp Cextending poste iorly to close the buecal end of the intertoph region.
ETYMOLOGY, Wanyi (as spoken by toy Stinken, formerly of Riversleigh Station) Nowidgee. grandmother.

Nowidgee matrix sp. nov.
(Figs 1, 2, Tablel)
DIAGNOSIS. As for the genlus.
MATERIAL EXAMINED. Holotype QMF30390, from Camel Sputum, Godthelp's Hill, D-Site Plateau. Puratypes QMF19961. 20255, 22761, 30393, 3039.4, 30395 from Camel Spulum Site. QMF 19937. 20069, 2(1080), 30391 from Woyne's Wok Sile, tal's Itil!, D. Site Plateat. Both System B sites (Archer ct al., 1989) of Miocene age.

ETYMOLOGY. Latin matrix. mother of an animal. relers to itw inferatral position.

DESCRIPTION OF HOLOTYPE. Right wentary fragment of most of the horizontal ramus to the Level of M4 and part of the ascending ranus. 11. Prand M1-4preserved. Ascending ramus at abou $110^{\circ 1}$ wocclusal plane of molar row. Masseteric canal confluent with inferior dental camal, making it difficult to assess extent of forward penetration of the masseter, but anterior wall of masseteric fossa extending anteriorly to ahout fevel of the M3 protelophid. At this level diatricter of common canal not greatly exceeding that of sulcus representing inferior dental canal in poscerior, lingual wall ol masseteric fossa. This suggests anterior portion ol common canal octu-
pied chiefly by vessels associated with dental canal and masseter not passing much more anteriorly than this level. Masseleric fossa buccally expanded with llat surface for attachment of superficial layer of masseter at anteroventral border, extending dorsally on anterobuccal margin of ascending ramus. Ventral margin of horizontal ramus gently convex with lowest point below $\mathrm{M}_{2} / \mathrm{M}_{3}$, Memtal Foramen just anterior to P_{3}, between root of 1_{1} and dorsal margin of the diastema; much smaller posterior mental formonen ventral to protolophid of M 2 . Posteroventrally inclined buecinator suleus between P_{3} alveolar margin and posterior mental foramen. Diastema short, as long as P_{3}. Damage to I alveolar margin ohscuring I_{2} or its alyeolus (I_{2} alveolus in QMF 19937). Mandibular symphysis extending posteniorty almost to level of P_{3} posterior margin.
Dentition. Molar row straight in occlusal view, P_{3} hexed slighly buccally out of alignment with it. In lateral view molat row concave: ocelusal surfaces of M2 and My lying below line joining coclusal surfaces of M_{1} and M4. Effects of wear on molar teeth progressively less ohvious inwards posterior of molar row. Molit size increases from M1-M3 but M3 larger than M4.
1, broken at anterior end, depth uniform over preserved length, rising at approximately 20° relative to dorsal margin of horjzontal ramus. Enamel confined to buccal side, has both dorsal and ventral enamel flanges, ventral being more strongly developed. Dorsal flange forms occlusal margin. Circular cross-section close to alveolus becoming more elliptical anteriorly.
P3 blade-like, 50% longer than M_{1}. Occlusal outline semilunas with straight lingual margin and convex buccal margin. Ocelusal crest slightly lingual to midline, flexes lingually at posterior end. Six small cuspids on ocelusal margin anterior to longer, posterior cuspid, Transcristids associated with each of 6 minor cuspids and anterior and posterior margins of blade delineated by vertical cristids. Lingual surface of occlusal blade more steeply inclined than buccal.
M_{1} almost square in ocelusal outline but narrower anteriorly than posteriorly. Protolophid shorter than hypolophid: protoconid closer to midline than is hypoconid. Lingual cuspids taller, more sharply angular and closer to adjacent latcral margin than rounded, buceal counterparts which are also more worn. Lingual surfaces verrical, buccal surfaces more gently sloping, Protolophid formed by metacristia descending buccally from inetaconid apex to lingual flank of profoconid. Thick paracristid running antero-
lingually from apex of protoconid to amtenior margin. Short, broad anterior cingulid anterior to anterior face of peotolophic, bounded buccally by paracristid, lingually by anteriorly directed premetacristid. Broad precingulid sloping steeply ventrally buccal to paracristid. Sharply-delined postmetacristid curving huccally from metacorid apex, descending to natrow interlophid valley. Anteriorly oriented preentocristid separated from ventral end of posimetacristid by narrow clelt. Cristid obliqua very thick, deseonding anretolingually from apex of typoconid winterlophid valley, then inclining buccally to apex of protoconid. Paracristid and eristid obliqua form cominuous longitudinal ridge extending from anterior margin to hypoconid. Hypolophid fomed by buccal crest from the entoconid descending from entoconid apex and ronning buccally to meel lingual flamk of hypoconid. Posthypocristid descending lingually from hypoconid apex. crossing lingually posterior to buccal erest from entoconid to posterior of entoconid below apex.
M_{2} larger and squarer than M_{1} with prorolophid and hypolophid of about equal length and protnconid and hypoconid in alignment. Similar to Ms but anterior cingulid longer and broader, precingulid shorter and interlophid valley broader.
Ms worn in trigonid region but talonid relatively unworn. Crown very similar to M 2 but most structures more elearly detined. Cristid obliqua massive in interlophid region, not much lower than apices of buccal cuspids. Lingual side of interlophid valley more open with greater separation of ventral ends of postmetacristid and preentocristid. Posthypocristid sharply detined crossing posterior surface from hypoconid apex to short, almost vertical postentocristid descending from apex of entoconid. Deep, narrow trench between crest of posthypocristid and buecal crest from entoconid anterior to it.
M4 unworn. Hypulophid shorter than protolophid. Cristid obliqua originating on anterobuccal face of hypoconid, below apex. Preentocristid and postmetacristid separated only by narrow eleft in interlophid valley. Posthypoeristid crest rounded, meeting entoconid much closer to its apex than on anterion molars. Buccal erest from entpeonid shorter and less sharply defined.

DESCRIPTION OF PARATYPES.

DENTARY FRAGMENTS. Horizontal ramus now as deep in juveniles as in aduls. Posterior thental foramen varics from bencath $\mathrm{M}_{2} / \mathrm{M}_{3}$. (ho-

FIG. I. QMF30390, Holotype, Nowidgee matrix sp. nov. A, huccal view; B, lingual view; C, stereopair of occlusal view. Scales $=10 \mathrm{~mm}$. AR number is that of the Archer collection, University of New South Wales.
lotypc) to as fur anterior as beneath hypolophid of M1. QMF20080 preserves angular process and much of ascending ramus but lacks condyle and coronoid process. Lingual margin of angular process low, aligned with molar row, posterior margin sloping ventrally towards lingual end. Pterygoid fossa triangular in dorsal view, buccal margin slightly undercutting base of ascending ramus. Mandibular foramen a narrow, vertically oriented ellipse, opening to very short posterior portoon of inferior dental canal opening via masseteric foramen to masseteric fossa. Masseteric foramen just visible when masseteric fossa viewed from buccal side. Molar row ventrally concave. Ascending ramus it about 113° to line of a straight edge laid on mular row.

LOWER DENTITION. dP_{2} and dP_{3} preserved in QMF20080 and 20063, detached dP_{3} available for QMF30392. UP2 (Fig. 2A) short, blade-like, with bulbous base tapering anteriorly and posteriorly. Occlusal margin straight, relatively hori-
zontal, with 4 small cuspids anterior to longer. posterior cuspid overhanging posterior base of tooth. Fifth cuspid incompletely differentiated from large, posterior cuspid in QMF20080. Transcristids associated with each of 4 anterior cuspids. Posterior, buccal face of crown abutting anterior lingual face of dP_{3}.
UP_{3} (Fig. 2A) narrower anteriorly than posteriorly, dominated by mussive, laterally compressed protoconid, the tallest cuspid on tooth. No distinct metaconid. Paracristid anterolingually directed, descending to paraconid on anterior margin. Cristid descending steeply from paraconid apex to crown base on buccal side of anterior margin. Cristid descending posterior face of protoconid to interlophid valley. Paraconid, paracristid and protoconid form blade-like crest complementing that of UP_{2}. Entoconid taller, more angular than hypoconid. Cristid obliqua running anterolingually from apex of hypoconid, crossing interlophid valley and ascending buccal tlank of protoconid. In QMF20069 and QMF30392 a shom, buccally-

FIG. 2. Paratypes of Nowidgee matrix sp. nov. A. stereopair of occlusal view of QMF20080, right dentary fragment with $\mathrm{dP}_{2-3}, \mathrm{M}_{1-3},\left(\mathrm{M}_{4}\right)$. B, stereopair of occlusal vicw of QMF30395, right maxillary fragment with P_{3}, M_{1-4}. Visible number is that of the Archer collection. University of New South Wales,
directed protostylid crest joining protoconid apex to a prominence (reduced protostylid), contacted by anterior end of cristid obliqua. Sharp preentocristid running to interlophid valley from entoconid apex. Buccally-directed crest from entoconid descending steeply buceally from entoconid apex to about midline of tooth. Posthypocristid descending lingually from hypoconid apex to shorter postentocristid ascending to entoconid apex.
P_{3} in QMF19937 and 30394 resembles holotype but with seventh minor cuspid, imperfectly differentiated from long posterior cuspid of occlusal crest. Seventh minor cuspid more clearly differentiated in P_{3} 's removed from crypts in QMF20080 and QMF30392.

Except for QMF 19961 in which anterior molars very worn, molar teeth in paratypes less worn than those of holotype. Molar morphology among paratypes very similar to holotype.

TABLE 1. Dental parameters for type specimens of Nowidgee matrix sp. nov.

Number	$\begin{gathered} \text { P2 } \\ 1 \end{gathered}$	$\begin{gathered} \text { P2 } \\ \text { w } \end{gathered}$	$\begin{aligned} & \mathrm{P} 2 \\ & \mathrm{~h} \end{aligned}$	$\begin{aligned} & \mathrm{P} 2 \\ & \mathrm{tcn} \end{aligned}$	$\begin{gathered} \text { P3 } \\ \text { I } \end{gathered}$	$\begin{aligned} & \text { P3 } \\ & \text { w } \end{aligned}$	$\begin{gathered} \text { P3 } \\ \text { h } \end{gathered}$	$\left\lvert\, \begin{aligned} & \text { P3 } \\ & \text { ten } \end{aligned}\right.$	$\mathrm{dP3}$	$\begin{aligned} & \mathrm{dP} 3 \\ & \mathrm{aw} \end{aligned}$	$\left\|\begin{array}{c} \mathrm{dP} 3 \\ \mathrm{pw} \end{array}\right\|$	M1	$\begin{aligned} & \text { M1 } \\ & \text { aw } \end{aligned}$	M1 pw	M2	M2 aw	M2 pw	M3	M3 aw	M3 pw	M4	M4 aw	M4 pw
F30390					6.0	3.2	3.6	6				3.9	2.8	2.96	4.1	3.1	3.2	4.1	3.2	3.0	4.2	3.1	2.8
F20080	3.9	3.4	3.4	4					3.4	2.2	2.6	3.8	2.4	3.0	4.0	2.5	2.9	3.7	2.6	3.0			
F20069	3.3	2.7	3.0	4	6.4	3.2	3.5	6	3.4	2.0	2.3	3.8	2.7	2.7	4.2	3.1	2.8						
F30391												3.9	2.6	2.8	3.8	3.0	3.0						
F19937					6.4	3.6	4.5	6															
F22761												3.3	1.6	2.0	3.6	2.3	2.3						
F30392									3.4	2.2	2.3	3.6	2.6	2.5	4.2	2.5	2.9	4.2	2.5	2.9			
F19961												4.2	2.5	2.5	4.2	3.1	3.1	3.9	2.8	2.8	3.8	2.7	2.5
F20255																		4.5	3.4	3.1	4.1	3.0	2.8
F19991																		3.9	3.1	3.0	4.1	3.1	
F30393									3.3	2.4	2.5	3.7	2.5	2.5									
F30394					7.1	3.2	3.8	6				4.0	2.2	2.6	3.8	2.9	3.0	4.0	3.1	3.0	4.0	2.9	2.7
MEAN	3.6	3.1	3.2	4	6.5	3.4	3.9	6	3.4	2.2	2.4	3.8	2.4	2.6	4.0	2.8	2.9	3.5	3.0	3.0	4.0	3.0	2.7
SD	. 4	. 5	. 3	0	. 5	. 3	. 5	0	. 1	. 2	. 2	. 3	. 4	. 3	. 2	. 3	. 3	1.5	. 3	. 1	. 2	. 2	. 1
F30395					7.6	-	3.9	6				4.1	3.8	3.7	4.0	4.2	4.0	4.0	4.1	3.6	3.7	3.4	2.7

2) Maxillary fragment. QMF30395 occludes extremely well with dentary lragment, QMF30394 found in close proximity. Preserves buccal surface of maxilla from diastemal region to masseteric process, including ventral margin of infraorbital foramen, suborbital shelf, alveolar process containing entire cheek tooth row and very narrow portion of palatine wing. Masseteric process of no more than a ventral prominence separated from alveolar process by short, narrow sulcus. Maxillary foramen of infraorbital canal at anterolingual corner of triangular suborbital shelf of maxilla, numerous smaller foramina within ventral margin of foramen. Infraorbital foramen dorsal to midpoint of P^{3}.

UPPER DENTITION. (Fig. 2B). Molar row slightly convex in lateral view, occlusal edge of P^{3} aligned with buccal margin ol molar row which curves slightly lingually anteriorly. Molar size increasing from M^{\top} to $\mathrm{M}^{3 ;} \mathrm{M}^{4}$ markedly smaller than M^{3}.
P^{3} almost twice length of M^{1}, lingual margin damaged, buccal margin convex for $2 / 3$ length, becoming concave for remainder. Ocelusal margin anteroposteriorly straight, on midline of tooth. Six small cuspules on margin, succeeded by larger, posterior cuspule which has strong lingual ridge associated with its base.
M^{1} with straight anterior and buceal margins and convex lingual and posterior margins. Anterior width greater than posterior width but protoloph and metaloph of about equal length. Low crowned with lingual cusps more massive and more rounded than buccal counterparts. Buccal cusps closer to lateral margin of the tooth: buccal surfaces of crown almost vertical, lingual surfaces sloping. Narrow lingual cingulum reaching from anterior, lingual base of protocone to base ol metaconule. Protoloph formed by strong paracrista directed lingually from paracone apex and which meets buccal flank of protocone below apex. Preparacrista runs anteriorly from paracone apex to anterior margin and is continuous with anterior margin of paracingulum bounded laterally by preparacrista and anterobuccally inclined preprotocrista which meets anterior margin anterior tojunction of paracrista with protocone. Very large stylar cusp C closing interloph valley on buccal side. Postparacrista and premetacrista reaching floor of interloph valley from respective cusp apices, but not united. Postprotocrista strongly developed but worn in interloph region, contacting metaloph crest just buccal to apex of metaconule. Prominent neometaconule at about centre of metaloph with rounded crista running posteriorly for about half height of metaloph. Postmetaconule crista buccally inclined on pos-
rerior face of metaconule, crossing posterior base of' metaloph as margin of strong metacingulum, contacting posteriorly directed postmetacrista at base of metacone.
M^{2} considerably wider anteriorly than posteriorly, occiusal outine more bluntly triangular. Crown differing from M^{1} in: Tingual cingulum continuous with precingulum extending anteriorly across base of protocone to anterior end of preprotocrista, sty lar cusp C slightly more anteriorly positioned on buccal flank of paracone and does not completely close huccal end of interloph valicy; neometaconule and its crista less obvious. M^{3} very similar to M^{2} but lingual cingulum not as sharply defined, stylar cusp C smatler. postparacrista and premetacrista anite to form continuous centrocrista. M^{4} much smaller than anterior molars. Metaloph markedly shorter than protoloph. Lingual cingulum separatud from precingulum, all cristae sharply defined. Meratonule lower; no neometaconule or stylar cusp C.

REMARKS. Nowidgee matrix is similar in size to Bulangamayadelicata but has bunolophodiont. rather than lophodont molars. Its bunotophodont lower molars resemble those of Putia mosaiuus. but molar occlusal outline in N. matrix is more rectangular, rather than square as in P. mosaicus. P_{3} of N matrix differs from that of P mosancus in having 6-7 rather than 8 transcristids and, while having a bulbous base, lacks the distine lateral cingulids of P. mosaicus. It differs from P. mosaicus in having an I_{1} which has both ventral and dorsal enamel llanges and in having enamel which, while confined to the buccal surface, exlends over that surface rather that being confined to its ventral portion as in P. mosaicus and other potoroines. Lower molars of N. matrix are similar to lower molars from the Tarkurooloo Local Fauna assigned by Flannery and Rich (1986) to Gumardee, but differ from them by being simaller in size. P_{3} of N. matrix has 6-7 transeristids, apparently many fewer than the P_{3} from the Tarkarouloo Gumardee, in which the posterior half, the only portion recovered, has 6 transeristids.

Among potoroids a dorsal enamel flange on I_{1} is confined to Hypsiprimnodon, Potorous, bulungamayines (Flannery et al,. 1984) and Milliyowi bunganditj (Ftannery et ad, 1992). N. matrix differs lrom Hypsiprimnodon by having permanent premolars which are elongated with horizontal or concave occlusal margins rather than plagiaulacoid with oonvex ocelusal margins, hov failure to nctuind P_{2} after the eruption of P_{7} and by having less disparity between the lengths of
protolophid and hypolophid on M_{1}. N. marrix differs from Polorous by having lower molars in which the buecal cuspids are positioned lingual to the adjacent lateral margin with the result that buecal crown walls are not as steep is in Pororcour. N. matrix differs from the similarly strongly bunolophodont carly Pliocene Milliyowi bungauditj in having a strongly developed stylar cusp C on M^{\prime} (absent in M, bungan(ij) and in lacking branches of the transcristids of P_{3}.

The resemblance of the 1_{1} dorsal enamet flange to that of macropodids is suggestive of a similarly macropodid-like cutting action during occlusion of upper and lower incisors, an unusual feature in an animal with bunolophodont molars similar to those of omnivorous potoroids in which incesors perform a more forcipulate function.

The posteroventrally inclined buccinator sulcus in N. marrix wats termed the 'labial groove' by Stirton (1963) who noted it in Protemnodon and other macropodids. Wondburne (1967) reported a similar structure in Hadronomus puckridgi. Where such a sulcus occurs among macropodids and other potoroids it is usually closer to and parallels the alveolar margin.
The reduced cuspid on the buccal flank of the large, central euspid of the dP_{3} trigonid which is linked by ridges to the apex of that cuspid and to the cristid obliqua, is interpreted herein as a reduced protostylid since it occurs in the cortesponding position and bears the same refationship to the cristid obliqua as do similar structures on M_{1} of other species, i.e., the protustylid crest of Wururoo devamayi Cooke, this volume, the discrete protosiylid of' Nambaroo saltavas Flannery \& Rich, 1986, and the protostylid of Palaeopotorous priscus. The dominant trgonid cuspid lingually adjacent to the protostylid on dP_{3} of N. matrix and from which the paracristid arises is thus the protoconid and the metaconid has been lost. The loss of the metaconid of dP3 may be, as suggested by Ride (1993), the result of a need to supplement the shearing crest of dP_{2} which is shorter than the permanent premolar in this species.

Apan from the discrete protostylid rather than a protustylar ridge, the holotype tooth of P, prisscus, designated as M_{1} (their M_{2}) by Flamery \& Rjch (1986), bears strong similarities to dP_{3} in paratypes of N. matrix. Undescrited Riversleigh bulungamayines also have a protostylar ridge on dP_{3} and a posterobuceally inclined protolophid similar to P. priscus. Since the latter character dees not oceur on molar teeth at plesiomorphic speetes such as N. mamiry which have otherwise
similar bunolophodont molars, it is suggested that the holotype tooth of P. priscus is dP_{3} rather than M_{1}. If this is the case, P. priscus must still be regarded as more plesiomorphic than N. matrix in view of the discrete protostylid on this tooth, hut other differences in this tooth, or in molars referred to this species, are here regarded as insufficient to warrant the ereetion of a new subfamily. Subfamilial affinities of the species remain uncertain: its bunolophodont molar morphology suggests it may represent either a plesionorphic potoroine or bulungamayine. However, the discrete protostylid on the holotype $\left(\mathrm{dP}_{3}\right)$ is plesiomorphic and the species may prove to be basal to both these taxa.
Lower molars in N. matrix are suitable to be ancestral to B. delicata. Lophids in N. matrix are clearly formed by transverse cristids extending buccally from the lingual cuspids. The posterior cingulid is enclosed by the posthypocristid which sweeps lingually posterior to the hypolophid and low on the crown before linking to the postentocristid on the posterior of the entoconid. In B. delicata the protolophid is formed in a manner similar to that of N. matrix but joins the protoconid closer to its apex. The posthypocristid is more elevated on the crown, more transversely oriented and links to the entoconid much closer to the entoconid apex. The buccally oriented crest from the entoconid is reduced in length and in prominence, the posthypocristid having formed a neornorphic hypolophid.
In the low-crowned upper molars of N. matrix, lophs are lormed by cristae extending lingually lrom the buccal cusps, upper and lower molars showing reversed symmetry in this respect. Longitudinal crests, notably the pre- and postprotocrista are emphasised, as they are in Gumardee pascuali. Strong longitudinal cristae characterise bunolophodont upper molars as defined by Flannery et al. (1984) who suggested that these mught work in a different way to lophodont molairs in which transverse rather than longitudinal cutting erests are emphasised.
In some undescribed plesiomorphic Riversleigh balbarines (pers. obs.) stylar cusps C and D or their stylar crests are present in the interloph region. N. matrix retains only stylar cusp C and lacks any trace of stylar cusp D. While both balbarines and bulungamayines are likely to be derived from bunolophodont ancestors, the absence ol stylar cusps other than C in what is an extremely plesiomorphic bulungamayne, suggests that loss of other stylar cusps had already occurred in the bulungamayine ancestor which
must in this aspeet at least, be more derived than that of balbarines.

Ganguroo gen. nov.

TYPE SPECIES. Ganguroo bilamina sp. nov.
DIAGNOSIS. Bulungamayines with lower molars whieh are eompletely bilophodont, laehing any traee of a bueeally-directed crest originating from the entoconid and anterior to the hypolophid.

REMARKS. Ganguroo gen. nov. differs l'rom all potoroines, hypsiprimnodontines and propleopines by having bilophodont lower molars. It differs from all macropodines and sthenurines by having a combination of: low-crowned molars; finely-ridged, elongate premolars; a deeply penetrating masseteric canal conlluent over its length with the inferior dental canal. It differs from all balbarines by having the elongate, finelyridged premolars referred to above, lacking a transversely compressed trigonid on M_{1} and in lacking a posterior cingulid on lower molars.
ETYMOLOGY. Waanyi (as spoken by Ivy Stinken, formerly of Riversleigh Station) gangu, grandfather and "roo" is a common Australian diminutive for kangaroo.

Ganguroo bilamina sp. nov.
(Fig. 3, Table2)
DIAGNOSIS. As for the genus
MATERIAL EXAMINED. Holotype QMF19915 from Waync's Wok, Hal's Hill' D-Site Plateau. Paralypes QMFI9591, 18810, 19814, 19835, 30398, 30399 froni Wayne's Wok Site; QMF19868, 19870, 19966, 30400 from Camel Sputum Site. Godthelp's Hill; QMF19642, 20293, 30396, 30397 from Upper Site. Godthelp's Hill; QMFI9988 from Mike's Menagerie Site, Godthelp's Hill; QMF23777 from Bites Antennary Site,eastern part of D Site Plateau. All System B, Miocene sutes (Archer et al., 1989).

ETYMOLOGY. Latin Kamina, blade; refers to the bilophodont lower molars.

DESCRIPTION OF HOLOTYPE. Left dentary including horizontal ramus, most of angular process and part ol ascending ramus. $\mathrm{I}_{1}, \mathrm{P}_{3}$ and M_{1-4} preserved. Ventral margin ol horizontal ramus strongly convex, decpest below protolophid of M3. distinct digastric prominence on the ventral margin at this point. Diastema relatively short, less than 20% ol length of cheek tooth row. Slender 1 a almost horizontal with dorsal ocelusal
margin well below plane of cheek rooth mow, Alveolus for very small I_{2} on dorsal margin of diastema just posterior to margin ol 'It alveolus. Mental foramen close in dorsal margin of diastema below anterior margin of P3. 2 very small posterior mental foramina more posseriorly, I below hypolophid of M_{2}. the other below protolophid of M3. Very shallow sulcus for attachment of buccinator muscle sloping diagonally ventrally on buccal surface below $\mathrm{M}_{1}-\mathrm{M}_{2}$. Ascending ramus at about 105° to line of a straight odge laid across high points of ocelusal surfaces of cheek looth row. Since woth row concave dorsally, such a line contacts posterior of P_{3} and hypolophid of M_{4}. Buccal margin of masseteric fossa straight with flat area for attachment of parts of superticial layer of masseter extending anteroventrally, Masseteric canal and inferior dental canal confluent anterior to large masseteric foramen. Diameter of foramen and anterior cortstriction of common canal suggest insertion of deep layer of masseter unlikely to have reached much more anteriorly than M3. Posterior to masseteric foramen inferior dental canal very short: masseteric foramen almost overlapped by mandibular foramen. Lingual margin of angular process aligned with molar row. Wide, shallow basin of pterygoid fossa overhung buccally by remaining anterior portion of ascending ramus. Mandibular symphysis decreases in height posteriorly. extends to level of posterior margin of P_{3}.
Dentition. Cheek tooth row anteroposteriorly straight; P3 flexed slightly buecally out of alhigrment. In lateral view occlusal margin of $\mathrm{P} s$ above that of molars. Molars low crowned, bilophodonsnotrace of any buccally-directed crest associated with the entoconid. Molar size increases from Mi to M3; M4 is smatler than M3.

It long and slender with low dorsal and ventral enamel flanges. Dorsal and ventral margins almost horizontal for most of length before latter converges on former at anterior end. Enamel confined to buccal surface, Cross section circular close to alveolar margin, triangular anterionly, resulting from development of rounded, longitudinal ridge central to lingual surface.

Is elongate, blade-like with mostly horizontal occlusal margin serrated over most of length anterior to large, posterior cuspid taller than rest of tooth. Serrations formed by 6 mintor cuspids, each with associated transcristids, most posterior of these least distinct and shortest. In ucelusal view crown base lapering anteriorly and posteriorly to rounded margins. Buccal margin convex, lingual margin relatively straight. Lingual kase of crown
bulbous adjacent to central region of occlusal blade, forming poorly-defined, rounded lingual cingulid. Ocelusal margin following midline hut posterior cuspid flexed lingually. Cristid do scending anteriorly from apex of most anterios suspid to crown base and posterior margin delineated by similar but shonter cristid descending from posterior cuspid.
M_{1} subrectangular in occlusal outline, narrower anteriorly than posteriorly. Lingual walls of crown subvertical, buccal side sloping more gently. Tooth worth. mote wear un buccal side. Wear facet on posterior of metaconid and breaches in enathel of protoconid, hypoconid and entoconid. Metaconid taller, more angular than protoconid which has been reduced in height by wear. Sharply defined erest of protolophid descending buccally from apex of metaconid to that of protoconid, Short paracristid running anteriorly from base of provoconid to anterior margin. Steeply descending enamel ridge on anterior margin buccal to paracristid, forming margin of short precingulid. Broad anterior cingulid enclosed hetween paracristid and prometacristid which runs between metaconid apex and anterior margin. Sharp postmetacristid destending posteriorly from metaconid apex to interlophid valley, meeting similarly well-defined preentocristid runnitg anteriorly from apex of the entoconid. Cristid obliqua worn, ruming anterolingually on anterior face of hypoconid before turning anteriorly across interlophid valley, meeting posterior face of protolophid lingually adjacent to protoconid base. Entoconid taller than hypoconid which is more worn. Crest of hypolophid crossing from posterior of hypoconid apex to meet entoconid apex centratly Postentocristid descending posterior face of entoconid but no other ormamentation nf posterior face of hypolophid. M2 similar in outline to Mi but slightly larger and less worn. Metaconid taller than protoconid but hypoconid and entoconid subequal in height. Postmetacristid and preentocristid not uniting in interlophid valley. Mz largest of molars, unworn, with all cuspids about equal height; lingual cuspids with more angular apices than buccal cuspids. M, damaged, lacking protoconid and most of anterior margin. Hypoconid taller than entoconid; no postentoctistid.

DESCRIPTION OF PARATYPES Condyle preserved in QMF19814, 19870. 19810 and 30396. InQMF19870 and 19814 1s tansversely clongate with rounded posterior margin. In QMP30396 coudyle has more circular outline. That of

FIG. 3. QMF19915, Holotype of Ganguroo bilamina sp. nov. A, buccal view; B, lingual view; C, stereopair of occlusal view. Scales $=10 \mathrm{~mm}$.

QMF 19810 slightly damaged lingually but similar to, although somewhat smaller than, that of QMF19870 and QMF19814. Differences in shape possibly age related sinee QMF30396 is from a subadult animal, indieated by ineompletely erupted P_{3}. Height of eondyle above plane of molar row varies from 7 mm in QMF 19870 and QMF30396 to 11 mm in QMF19810, variation possibly being size related. Angle of ascending ramus relative to plane of molar row varies 120° (AR12517)-108 ${ }^{\circ}(\mathrm{QMF} 18814)$.
Digastrie proeess on ventral margin of horizontal ramus apparently variable within species: QMF19814 level of development comparable to that of holotype, but other paratypes show lesser or no such development. Number of posterior mental foramina also variable: most paratypes have only one such foramen, consistently loeated below M_{2}, but none present in QMF30398 while two present in QMF30400 and QMF19966. QMF19988 has number of smaller foramina accessory to mandibular foramen and also has sul-
eus for vessels of inferior dental canal on lingual wall of masseteric fossa. Posterior portion of inferior dental canal between masseteric foramen and mandibular foramen longer in AR12517 than in holotype and most other paratypes. QMF30400 and QMF19988 have direct opening via single foramen from pterygoid fossa into masseteric fossa with no intervening eanal (the eondition usual among extant maeropodoids).

Damage to ventral margin of horizontal ramus reveals extent of anterior insertion of masseter, in QMF19868 and QMF20293 it reaehes level of M_{2} hypolophid, but only to level of M_{3} hypolophid in QMF30397.
DENTITION. dP_{2} and dP_{3} in QMF19835, 23777. dP 2 small, blade-like with rounded anterior and posterior margins, strongly convex buccal margin and straight lingual margin. Oeclusal crest serrated over much of length anterior to large posterior cuspid overhanging posterior base of erown. QMF19835 has 3 small cuspids in serrated region, eaeh with associated transcristids; 4

TABLE 2. Dental parameters for type specimens of Ganguroo bilamina sp. nov.

Number	$\begin{gathered} \mathbf{I}_{1} \\ \mathbf{I} \end{gathered}$	$\begin{aligned} & \mathrm{I}_{1} \\ & \mathrm{w} \end{aligned}$	$\begin{gathered} P_{2} \\ \mathbf{l} \end{gathered}$	$\left\|\begin{array}{c} P_{2} \\ m w \end{array}\right\|$	$\begin{gathered} \mathbf{P}_{2} \\ \mathrm{~h} \end{gathered}$	$\begin{gathered} P_{2} \\ \operatorname{ten} \end{gathered}$	P_{3}	$\begin{gathered} P_{3} \\ \mathrm{mw} \end{gathered}$	$\begin{gathered} \mathbf{P}_{3} \\ h \end{gathered}$	$\begin{gathered} P_{3} \\ \text { ten } \end{gathered}$	$\left\lvert\, \begin{gathered} \mathrm{dP}_{3} \\ 1 \end{gathered}\right.$	$\begin{array}{r} d P_{3} \\ a w \end{array}$	dP_{3} pw	$\begin{gathered} M_{1} \\ I \end{gathered}$	M_{1} aw	\mathbf{M}_{1} pw	$\begin{gathered} \mathrm{M}_{2} \\ \mathrm{I} \end{gathered}$	$\begin{gathered} \mathbf{M}_{2} \\ \text { aw } \end{gathered}$	\mathbf{M}_{2} pw	$\begin{gathered} M_{3} \\ I \end{gathered}$	M_{3} aw	M_{3} pw	M_{4}	\mathbf{M}_{4} aw	M_{4} pw
F19915	11.6	2.2					5.9	3.3	3.9	6				3.7	2.4	2.6	3.7	2.7	2.8	3.7	2.6	2.6	3.8	-	2.6
F30400																	3.9	2.8	2.9	3.7	2,8	2.8	3.8	2.8	2.7
F23777			4.2	2.5	3.1	3					3.5	2.0	3.3	3.6	2.8	3.0									
F19868	10.9	2.1					5.9	3.1	3.7	5							3.8	2.9	2.8	3.8	2.9	2.9			
F19870											4.2	2.6	2.8	4.0	2.8	3.0	3.8	3.1	3.1	4.0	2.9	2.8			
F19966							5.9	3.1	3.9	6	3.4	2.6	2.8	3.8	2.8	3.0	3.9	3.1	2.9	3.9	3.0	2.7			
F19988																			2.8	3.8	2.8	2.8	3.6	2.9	2.5
F30396		1.7					5.3	2.4		6				3.4	2.6	2.6	3.7	2.7	2.7	3.9	2.9	2.7			
F30397							6.3	3.1	3.7	7				3.5	2.3	2.5	3.9	2.7	2.8	3.9	2.9	2.8	3.9	2.7	2.5
F19642							5.6	2.3	3.9	6				3.5	2.1	2.4									
F20293																	4.1	3.0	3.0	3.9	3.0	2.9	3.9	2.9	2.9
F30399							6.2	2.8	3.6	7				3.5	2.2	2.7	3.5	2.5	2.9	3.6	2.7	2.8	3.8	2.7	2.7
F30398							6.1	3.0	3.5	6				3.5	2.6	2.7	3.6	3.0	2.9	3.8	3.0	2.8	3.5	2.8	2.3
F19591																				3.9	3.2	2.7			
F19810														3.6	2.6	2.6	3.8	2.8	2.8	3.8	2.7	2.9	3.7	2.8	-
F19814							5.9	3.2	3.7	6				3.6	2.5	2.8	3.7	2.6	3.0						
F19835			3.4	3.0	3.6	4	5.7	2.8	4.0	5	2.9	2.3	2.3	3.1	2.5	2.7									
MEAN	11.3	2.0	3.8	2.8	3.4	3.5	5.9	2.9	3.8	6	3.5	2.4	2.8	3.6	2.6	2.7	3.7	2.9	2.9	3.8	3.0	2.8	3.7	2.9	2.6
SD	4.9	. 3	. 6	4	. 4	. 7	. 3	. 3	. 2	. 7	. 5	. 3	. 4	2	. 4	. 2	. 4	. 3	. 1	. 3	. 3	. 1	. 3	4	. 2

such cuspids in QMF23777. Anterior and posterior margins of crown delineated by vertical cristids descending from cnds of occlusal crest. Occlusal crest runs slightly lingual to midline, lingual surface ol crown more steeply inclined than buccal.
dP_{3} better preserved in QMF23777 and used as basis lor description below. Crown base roughly rectangular in occlusal outline, narrowing somewhat anteriorly. Protolophid extremely latcrally compressed, inclined posterolingually, dominated by tall protoconid with thick, rounded protostylid crest descending its buccal flank. Metaconid cannot be distinguished from protoconid. Prominent paracristid (less so in QMFI9835) runs antcriorly to tall paraconid (shorter in QMF19385) on anterior margin. Paraconid, paracristid and protolophid form blade-like erest complementing that of dP_{2}. Vertical cristid descends from postcrior margin of protolophid crest to interlophid valley and is contacted by anteriorly dirccted preentocristid in QMF19835, but not in this specimen. Hypolophid transversely oriented, concave in posterior view. Cristid obliqua runs antcrolingually on anterior face ol hypoconid, turning anteriorly across interlophid valley and contacting protostylid crest. No ornamentation on posterior face of hypolophid.
P_{3} in most paratypes closely resembles that of holotype but QMF30399 has 7 minor cuspids rather than 6.

Molar inorphology very similar to that of the holotype although variable postentocristid between different specimens and between different teeth in single specimens.

DISCUSSION

The horizontal orientation of I_{1} is similar to that in macropodines in which there is considerable ventral flexion of the rostrum, necessary to bring upper and lower incisors into occlusion and there would presumably be a corresponding flexion of the rostrum in this species. dP_{3} is very similar to that of N. matrix but is more derived in that the reduced protostylid of N. matrix is here further reduced to a protostylid crest. Molars in this species are more derived than in either N. matrix, B. delicata or Wabularoonaughtoni becausc they are lophodont.
N. matrix, B. delicata and G. bilamina represent stages in an evolutionary sequence in which a bunolophodont, omnivorous ancestral form is changed to that of a lophodont herbivore (Fig. 4). Hypolophid morphology is particularly informative in this respect. As discussed earlier, a neomorphic hypolophid has becn developed in B. delicata by clevation of the posthypocristid on
the crown and directing the posthypocristid more transversely. Hypolophid morphology in W. naughtoni closely resembles that of B. delicata. The bunolophodont origin of this morphology is indicated by the reduced buccal crest from the entoconid anterior to the new hypolophid, representing the remnant of the original hypolophid crest. No trace of this crest is evident in G. bilamina, the neomorphic hypolophid crest being formed entirely by the elevated, transverse posthypocristid as indicated by the presence of a postentocristid on the posterior face of the entoconid. Loss of the buccally-directed crest from the entoconid represents a subtle change in morphology between N. matrix and C. bilamina but a highly significant apomorphy.

The evolutionary scries represented by these bulungamayine taxa demonstrates that lophodonty evolved independently twice among Oligocene-Miocene kangaroos - once in bal barines in a process which seems to have been essentially that proposed by Flannery \& Rich (1986) and once among bulungamayines using the mechanism proposed above. While Flannery (1989) suggested that balbarines were ancestral to macropodines and sthenurines, the similarity of premolar and molar morphology of derived bulungamayines such as G. bilcunina to that of the later Miocene macropodids from Alcoota is greater than that of more deri ved balbarines such as Balbaroo in which on M_{1} there is still considerable lateral compression of the protolophid and little development of the anterior cingulid. The premolar of balbarines is also much shorter than that of bulungamayines and the plesiomorphic Alcoota macropodids (Cooke, 1997).

Lower molar morphology of G. bilamina has strong similarities to that of the much larger Hadronomus puckridgi Woodburne, 1967 from Alcoota which Murray (1991) regarded as a plesiomorphic sthenurine. Both species are lowcrowned and bilophodont, have long anterior cingulids, have M_{1} protolophids which are not laterally compressed and lack posterior cingulids, although Hadronomns has a bulbous base to the hypolophid. Hadronomus also has an elongate premolar, resembling in that respect the premolar of bulungamayines, but that of Hadronomus is more coarsely serrated than that in any of the known bulungamayine species and bears well developed lingual and buccal cingula, not present in bulungamayines. However, paratypes of N. matrix show variable differentiation of minor cuspids and transeristids on P_{3}, indicating some lability in degree of serration of the occlusal
margin of this tooth in bulungamayines. The bulbous base of the bulungamayine P_{3} could serve as an adequate precursor of lateral cingula (a lingual cingulum is poorly developed on P_{3} of G. bilanina). The premolar of all known balbarines is in contrast a shorler, more plagiaulacoid tooth.
Similarities also exist between dental morphology in G. bilamina and in Dorcopsoides fossilis, also from Alcoota. While this species was originally included within Potoroidae, Bartholomai (1978) placed it in Macropodinae. Both species have elongate premolars. Lateral cingula are lacking in P_{3} of Dorcopsoides while a lingual cingulum is poorly developed in that of G. bilamina and there are again differences in serration and transcristids between the two species.
dP_{3} in N. matrix and B. bilamina has some similarity with that of Dorcopsoides in that the metaconid is reduced or absent in each. Woodburne (1967) also noted the 'fused protoconid and metaconid' of dP_{3} in Dorcopsoides and 'a short posterolabial crest ... which turns abruptly posteriorly before descending into the transverse valley and continues posterolabially up the anterior face of the hypoconid'. This crest may be homologous with the protostylid crest which is linked to the cristid obliqua of dP_{3} in N. matrix and G. bilamina but which is also present on dP_{3} in undescribed Riversleigh balbarines referable to Nambaroo and in which there is also considerable abbreviation of the protolophid (pers. obs.). Ride (1971) suggested that close proximity of the protoconid and metaconid on dP_{3} is plesiomorphic for macropodoids (his macropodids), and the protostylid or its reduced form of a protostylid crest in both potoroids and macropodids suggests that this character is similarly plesiomorphic.

While lower molar morphologies in G. bilamina and Dorcopsoides are similar in many respects, they differ markedly in that Dorcopsoides has a well-developed posterior cingulid, absent in all bulungamayines but present in balbarines. Derivation of Dorcopsoides from a bulungamayine ancestor would require development of a neomorphic posterior cingulid, such development possibly indicated by the swollen hypolophid base of Hadronomus. Evolution from a balbarine ancestor would require modification to both the anterior cingulid and compressed protolophid of M_{1}, but moditication of pre-existing structures is a more usual evolutionary phenomenon than the development of new structures. This notwithstanding, dental morphology in bulungamayines is such that, on

Henk Godithelp for encouragement and assistance, Anna Gillesple. Steph Williams and others at the University of New South Wales for preparation.

Fil 4 , Development of lophodonty in bulunganayines, illustrated hy RM. A. Nowidgee matrix, B, equivalent to B. delicata. C, G. bilamina. Abbrevitituns: $\mathrm{Pr}=$ protnconid, $\mathrm{Me}=$ metaconid. med=metacristid. $H \mathrm{Y}=$ hypoconid, Ec=entoconid, ecd=buccal crest from entoconid. phe=posthypocristid, pec=postentocristid, co=cristid obliqua.
the grounds of parsimony, they, rather than ballarines, must be preferred as the group most closely ancestral to macropodids.
In the hypothesis of molar evolution within Bulungumay inae adyanced hercin, there is a transition from a potoroid-like molar in basal species to is macropodid-like molar in derived species. Such a transitional sequence within the group may explain the differing views of familial affinity of bulungamayines (Case, 1984; Woodhurne, 1984; Flannery el al. 1984). At the time their respective views were advanced. only 2 bulungamayine spectes, B, delicata and W. numghoni, had been described. Molar morphology in both those species is intermediate in the trinsitional sequence and it is not surprising that both macropodid and potoroid affinities could be argued on the hasis of these species.
If, as seems likely from the evidence provided herein. that bulungamayines are directly ancestral to macropndids, then monophyly of EBulungamayinue cannot be stated with cerlainty. Further doubts also arise eoncerning monophyly of Macropodidae.

ACKNOWLEDGEMENTS

Rescarch grants from the Australian Rescarch Council and the University of New South Wales have been the primary mechanism for providing the material sludied. Additional support for the Riversleigh project has cone from the Natonal Estates Progran grants, the Australian Geographical Socicty. The Australian Museum. The Riversleigh Society, ICI Pty Lid. Century Zinc Limited, the Mt. Isa Shise and private donors.
I thank the Director and staff of the Queensland Museum for facilities and assistance, Jeff Wright lor photographic assistance, Mike Archer and

LITERATURECITED

APLIN, K.P. \& ARCHER, M. 1987. Recent advances in marsupial systematics with a new syncretic cdasshleation. Pp xv-lxxiii in Archer, M. (ede) 'Possums and Opossums: Studics in Evolution'. (Surrey Beally \& Sons: Sydney).
ARCHER, M. 1979. Wabutaroo nuughoni gen. et sp. nov... an enigmatic hangaro (Marsunialia) from the middle Tettiary Carl Creck Limestone of northwestem Queensland. Results of the Ray E Lemicy Expeditions, part 4. Memoirs of the Queensland Museum 19: 299-307.
ARCHER, M. 1984. The Australian marsuphal tadidtion. Pp. 633-808 In Archer. M. 故 Claytho G (eds) 'Vertebrate Zoogengrapliy and Evolutin in Austrilasia: Hesperian Press: Perth, Westem Australia).
ARCHER, M. \& BARTHOLOMAI. A. 1978. Tcriary mammals of Australia, a synoplic review. Aícheringa 2: 1-19
ARCHER, M. \& 凡ANNERY, T.E. 1985. Revision (1) the extinct gigantic rat kangaroos (Pororoidac: Marsupialia), with a description of ancw Miocene genus and species and a new Plesisocene spectios of Propleopus. Joumal of Paleontology 59:1131. 1149.

ARCHER. M.. GODTHELP. H... HAND. S.J \& MEGIRIAN, D. 1989. Fossil mammats of Riversleigh, northwestern Queensland: preliminary overview of hiostratigraphy, comelation and environmental change. Australian Zoologist 25(2): 29-65
BARTHOLOMAI, A. 1978 . The lossill kanaronos. Australian Mammalogy 2: 15-22.
CASE, JA. 1984 A new genus of Potoroilase (Marsupiatia: Macropodidae) from the Mioceno Nigapakaldi Local Fauna, South Australlia, and is delinition of the Potoroinac. Joumill of Pithentol. ogy 58(4): 1074-1086.

COOKE, B.N. 1992. Primitive macropodids from Riversleigh, northwestern Queensland. Alchernga 16: 201-217.
1997. Two new balbarine kangatons and lower molar evolution within the subfamily. Memoirs of the Queensland Museum 41:269-280.
FLANNERY, T.F. 1989. Phylogeny of the Macropodoideatastudy in convergence, Pp 1-46. In Gricg, G. Jarman, P\& Hume, I. (eds) 'Kangaroos, Wallabies and Rat-K"angaroos'. (Surrey Beatty \& Sons: Sydncy).
FLANNERY, T. \& ARCHER. M 1487a. Hypsiprimmodon bartholomsii (Potorordac: Marsupialia). a new species from the Miocene Divamanor Local Finuna and a reassessment ol the phylogenetic position of H. moschatus. Pp 749-758. In Archer, M. (cd), Possums and opossums: studies in evolution. (Surtey Beatty \& Sons: Sydney).
1987b. Benongia moyerst, anew and plesionorphic kangaroo (Marsupialia: Potoroidae) from Miocene sedimenls of norlhwestern Queensland. Pp 759 -767. In Archer. M, (cd) 'Possums and Opossums: Studes in Evolution'. (Surrey Beatty \& Sons: Sydney).
FLANNERY, T.F. \& RICll, THV. 1986. Macropodoids from the Middle Miocene Nambad Formation, South Australlia, and the homology of some dental structures in kangaroos. Joumal of Paleontology $60(2): 418-47$.
HLANNERY, T:F. ARCHER, M. \& PLANE, M. 1982 Middle Miocene kangaroos (Macropodoidea. Marsupialit) from three localities in northern Australia, with a description of two new subfamilies. Bureau of Mineral Resources Joumal of Australian Geology and Geophysics 7: 287-302,
1984. Phylogenetic relationships and a reconsideration of higher level systematies within the Potoroidac (Marsupialia). Journal of Paleontol0gy 58(4):1087-1097
FLANNERY, T.F., RICH.T.H., TURNBULL. W.D. d LUNDELIUS, E.L., 1992. The Macropodoidea (Marsuparia) of the early Pliocene Itamilton Local Fraunaz, Victoria. Australia, Fioldiam Geol. 25: 1-37.
FLOWER. W,It, 1867. On the development and succession of feeth in the Marsupialta. Philosophecal

Trausactions of the Royal Society of London B 157: 631-6+1
LUCKETT, W.P. 1993. An ontogenetic assessment of dental homologies in therian mammals. Pp 182304. In Szalay, F.S, Novacch, M.J. \& McKenna, M.C. (cds) 'Mammal Phylogeny'. (Springer-Verlag: New York).
MURRAY, P.F. 1991. The sthenurine affinity of the Late Miocene kangaroo, Hadronomas puckridg i Woodhurnc (Marsupialia, Macropodidae). Alcheringa 15:255-283.
RIDE, W.D.L. 1971 . On the fossil evidence of the cvolution ol the Macrupodidae. Ausitalian Z(o) ogist 16(1): 6-16.
1993. Jackmahomeva gen, nov. and the genesis of the macropodiform molar. Menoirs of the Assochation of Australasian Palacontologists 15:441459.

STIRTON. R.A. 1963. A review of the macropodid genus Protermodon. University of Califomia Publications in the Geological Sciences 44:97162.

SZALAY, F.S. 1969. Mixodectidac, Mienusyopidac, and the losectivore-Primate transitron. Bulletin of the American Muscum of Natural History 140. 193.330.

TEDFORD, R.H. \&e WOODBURNE, M.O. 1987. The Ilariidae, a new family of vombatiform marsupials from Miocene strata or South Australia and an evaluation of the homology of nolar cusps in the Diprotodontia. Pp 401-418. In Archer. M. (ed) "Porsums and Opossunns: Sudies in Evolution". (Surtey Beatty \& Sons: Sydney)
WOODBURNE, M.O. 1967. The Alcorta Fiana Central Australia: an integrated palacontological and geological study. Bureau of Mineral Resources, Geology and Geophysics Bulletin 87.
1984. Wakienakie lawsoni, anew genus and species of Pouronnae (Marsupialia: Macropolidate) of medial Mincene age. South Australia, Journal of Palcontology 58(t): 1062-1073.
WOODBLRNE, M.O., MACFADDLN. B.J.. CASE, J.A., SPRINGER, M.S., PLEDGE. N.. POWER, J.D.. WOODBLIRNE, JM. \& SPRINGER, K.B. 1493. Land mammal biostratigraphy and magnetostratigraphy of the Etadunnat Formation (late Oligucenc) of South Ausiralia, Journal ol Verte. brate Paleontology 14, 483-515.

